
PrivacyPalisade: Evaluating App Permissions
and Building Privacy into Smartphones

(Invited Paper)

Anthony Quattrone, Lars Kulik,
Egemen Tanin, Kotagiri Ramamohanarao

Department of Computing and Information Systems

University of Melbourne, Australia

Email: quattronea,lkulik,etanin,kotagiri@unimelb.edu.au

Tao Gu
School of Computer Science and IT

RMIT University, Australia

Email: tao.gu@rmit.edu.au

Abstract—Privacy has become a key concern for
smartphone users as many apps tend to access and
share sensitive data. However, it is not easily under-
standable for users which apps access what type of
data and which are the minimal access permissions
required to achieve a certain functionality. Although
there are apps targeting privacy concerns, they only
show which type of data is accessed but not whether
it is necessary for an app to achieve its functionality.
We propose a model that groups apps together in terms
of advertised functionality and assesses an app’s pri-
vacy intrusiveness based on the requested permissions
relative to similar apps. To improve user comprehen-
sion of permissions, we implement PrivacyPalisade and
demonstrate Android OS level modifications that use
visual cues to indicate the privacy intrusiveness of
an app. If an app requests a permission that is not
common in its cohort, the user is notified and shown
visually the permission implications. We demonstrate
that the proposed approach is scalable and incurs little
performance overhead.

I. Introduction

The ubiquity of mobile smartphones combined with
advancements in mobile network infrastructure has
created a strong market for third party apps. While the
apps and service providers are of great convenience to
its users, there are concerns of the privacy implications
[1]. Mobile apps greatly enhance the experience of
using smartphones. These apps are typically devel-
oped by both large software firms and independent
programmers [2]. Modern platforms allow for third-
party developers to create apps and distribute them
in app stores or marketplaces. Popular app stores for
Android include Google Play, Amazon Appstore and
GoAPK while iOS users primarily download apps from
the Apple AppStore. Google Play and Apple AppStore
now list over one million apps.

Third-party developers can access a large amount
of user data using standard API calls provided by the
mobile platform and send it directly to remote servers.

Apps often make use of user data to provide functional-
ity. For example, VoIP apps such as Viber require access
to a user’s contacts list to provide a list of people the
user can call. For this case, iOS displays a popup asking
the user if the app is allowed to access contacts. In
contrast, Google Play only alerts the user at installation
time. The contacts permission is justified for the VoIP
app in order to provide auto-dialing. However, many
other apps, such as weather apps, do not require the
permission in general.

The architecture for privacy protection varies be-
tween mobile platforms. Android depends on a soft-
ware based permissions system. When an Android user
downloads an app, a dialog at installation explains what
data an app can access. In contrast, Apple employs
staff members that manually review apps with internal
checks. Both approaches are not without issues. It has
been shown that user comprehension of permissions
is low among Android users. While iOS users need to
place trust in the AppStore review process which is not
entirely transparent. A more comprehensible privacy
solution is needed that does not unnecessarily hinder
app functionality while at the same time protects user
privacy.

App similarity has been provided as a measurement
by marketplaces. It is commonly based on download
statistics across apps. For example, if users down-
loaded one app, how many of those same users down-
loaded another app. We propose a protection method
that uses app similarity to detect anomalies. From
building a table of permissions requested of an app and
comparing it with the permissions of those of similar
apps, anomalies can be detected. We use Isolation For-
est [3], a data-mining technique for detecting outliers to
find the anomalies based on the requested permissions.

We focus on Android, which is a popular open source
Linux based mobile OS designed for smartphones and
tablets. Android is used to prototype our approach as its



open nature allows changes to be made to the privacy
models. As of 2014 Android has an estimated global
marketshare of 81.5% [4], thus privacy research of the
platform is of great importance.

To evaluate our approach, we developed a web
scraper and collected information of nearly 17,000 of
the most popular free and paid apps from the Google
Play store. For each app, data collected by the web
scraper includes the permissions required by the app
and a list of similar apps as suggested by Google Play.
We demonstrate our approach for flagging outliers in
app permissions will eventually lead users to pick apps
that take more conservative paths to user data access.

Based on our model, we implemented a service
called PrivacyPalisade that checks apps installed on the
smartphone. If an app is found to contain permissions
that are outliers, the user is notified about the nature
of the data the app requested at launch time. We made
OS level modifications to achieve this. Our evaluation
shows that PrivacyPalisade does not add much over-
head to the system and uses little resources. It works
across free and paid apps as it does not need access to
the bytecode files.

Detecting potentially harmful Android malware us-
ing requested app permissions as training vectors for
use in data-mining approaches has been attempted be-
fore in [5]–[7]. PrivacyPilsade is more privacy focused
and differs by determining if permissions are justified
relative to app functionality. The permissions of similar
apps are used as means of comparison to achieve this.

In summary our key contributions are to:

• Propose an approach to highlight outlier permis-
sions relative to an app’s category and functional-
ity;

• Implement PrivacyPalisade, a ready-to-deploy ap-
plication that highlights privacy implications to
Android users;

• Demonstrate OS level modifications that receive
PrivacyPalisade messages to help alert users of
privacy implications;

• Provide case studies of apps that we believe do not
follow the path of least privilege.

II. App Classification

In order to detect if an app has permissions that are
excessive relative to advertised functions, a compari-
son can be made with apps that provide comparable
features. Similar apps as suggested by marketplaces
provides a good cohort for comparisons. Anomaly de-
tection techniques like Isolation Forest can be trained
on permissions of similar apps and evaluated on the
target app to determine if it is an outlier.

A. Dataset

Apps in the Google Play marketplace are listed under
a range of categories. Each detailed app listing states
all permissions required, also presented are suggested
apps that are similar. We developed a web scraper to
collect this information across 16,581 popular apps.
While Google Play contains millions of apps, scrolling
through the catalog lists the most popular apps. Thus,
we considered the popular apps interesting for analysis
because they are widely used.

B. Isolation Forest Overview

Isolation Forest is a unique anomaly detection tech-
nique as it builds a profile that explicitly isolates
anomalies as opposed to building a profile of normal
points and finding those that do not conform [3]. In
many cases, there are only a small number of similar
apps to compare to a target app. Thus, Isolation Forest
is a suitable choice because it has demonstrated high
performance with minimal training.

C. Data-Mining Approach

Data is processed to represent each required permis-
sion as a separate field using a binarized value. A table
is created for each target app. An example is shown in
Table I.

App Name Perm1 Perm2 Perm3 PermN
SimilarApp1 0 1 1 0
SimilarApp2 1 1 1 0
SimilarApp3 1 1 1 1
TargetApp 0 1 0 1

TABLE I: Representation of Apps Permissions

The permissions we used for training include:

• Read your contacts
• Read phone status

and identity
• Approximate location
• Precise location
• Run at startup
• Record audio

• Call phone numbers
• Send SMS messages
• Read SMS messages
• Read calendar events
• Require full network

access

An IsolationForest is constructed from the similar
app vectors. The target app is then evaluated resulting
in a IsolationScore between 0 and 1. A score of 1
indicates definite anomalies, while 0.5 indicates the app
is consistent with similar apps. The following rules are
applied to determine the level of severity of an app:

• Red Alert - If an IsolationScore is greater than ε

and uses a sensitive permission;
• Blue Alert - If an IsolationScore of less than ε and

uses any sensitive permissions;
• Green Alert - If an app does not require any sensi-

tive permissions.



ε Green(%) Blue(%) Red(%)
0.5 26.51 36.62 36.87
0.6 35.14 50.48 14.38
0.7 36.45 56.34 7.21
0.8 37.19 60.09 2.72
0.9 37.56 62.44 0.00

TABLE II: Percentage of Apps Flagged Across Alert
Levels for Different Values of ε

The value for ε used by PrivacyPalisade was empirically
determined by testing different values and taking the
ratio of alerts that appeared the most reasonable, in
the case of our dataset it was ε = 0.7.

D. Outlier Results

We ran our app classification technique on every app
in our dataset. Table III lists common categories and
the percentage of alerts triggered by apps. Communi-
cations had the highest percentage of red alerts, while
books were amongst one of the safest categories.

Category # Apps Green(%) Blue(%) Red(%)
Communication 381 14.70 73.32 12.07
Social 382 24.35 65.18 10.47
Music Games 320 59.06 30.94 10.00
Action Games 487 32.03 58.52 9.45
Adventure Games 447 39.60 54.36 6.04
Lifestyle 318 42.09 52.53 5.38
Books 356 55.62 39.89 4.49

TABLE III: Number of Outliers Detected Per Category

III. PrivacyPalisade

In this section, we present the design of PrivacyPal-
isade, a system designed to help protect users from
potentially privacy invasive apps and improve user
comprehension. To improve user comprehension, our
system flags outlier apps installed and displays permis-
sions implications at launch time. This is challenging
to implement because third-party apps do not allow to
intercept and block an app when it is launched. Thus,
we made enhancements at the OS level. The Android
OS Launcher is modified to overlay privacy information
and recompiled as a custom ROM that can be deployed
on Android devices. The system consists of a web
service, an Android app and an Android background
service.

The web service maintains a database of Android
apps and their respective privacy information as gener-
ated in Section II. By passing an Android app package
name via a GET request, a JSON response is returned
with the privacy rating and outlier permissions. The
web service was implemented in PHP and deployed on
Apache.

PrivacyPalisade runs a background service on the
Android device that communicates with a server re-
trieving information about apps a user has installed.

This information is stored in an internal database lo-
cal to the user’s device, entries are added and re-
moved when a user installs and removes an app. Our
background service communicates privacy information
both to the PrivacyPalisade Activity and the Android
Launcher. Other apps and widgets can also use Priva-
cyPalisade information.

(a) List of Installed Apps (b) Visual Alerts

Fig. 1: PrivacyPalisade

Users can browse the privacy information for in-
stalled apps using the user interface displayed in Fig-
ure 1. Icons are colored based on invasiveness. Green
denotes safe, blue indicates neutral and red for poten-
tially invasive. When an app is opened, a popup dialog
is loaded which presents a view explaining permissions
used.

The Android Launcher displays the home screen,
phone dialer, messaging and app icons for users to
launch third-party apps. While the PrivacyPalisade UI is
useful to display if apps are safe, it is more convenient
for the user to see this information directly in the
launcher. To build the customized launcher, we down-
loaded the OS source code for Android 4.4 KitKat from
https://source.android.com and compiled it on Ubuntu
Linux 14.10.

Fig. 2: Color Coded Android Launcher Icons

The original launcher was modified to listen for
broadcasts from the background service. Based on
the invasiveness level; the Bitmap of the app icon is
overlaid with a color filter. An example is displayed in
Figure 2. An additional class is added to the source
tree to display custom dialog boxes when an app is
executed from the Launcher application. If the user
selects “Open App”, the original Intent to start the



(a) Location Alerts (b) Read SMS (c) Record Audio

Fig. 3: PrivacyPalisade Permissions Alert Dialogs

Activity is called, otherwise if a user selects “Close
App”, the app will not open and the dialog will dismiss.

We show the information of permission outliers with
intuitive icons. If a location permission is detected as
an outlier, the user is displayed an image of a map
and a house marker (Figure 3a) making it obvious that
the app can possibly know a user’s home location.
The SMS messages bubble (Figure 3b) indicate the
app wants to read SMS messages, using bubbles is
intuitive inspired by the way that users typically read
messages on a modern smartphone. The microphone
screen displayed in Figure 3c makes it clear the phone
can start recording.

IV. App Case Studies

Our study shows that PrivacyPalisade detects be-
tween 5% to 10% of apps as outliers in each Play
Store category. The apps we selected to present as case
studies are very popular and require permissions that
are not needed for their functionalities. It was found
that many apps request “precise location” when only
“approximate location” is required. Furthermore, some
apps request permissions in which there is no direct
use case to provide app functionality. We show some
examples as follows.

A. iHeartRadio

iHeartRadio is a popular free music streaming ser-
vice for Android and iOS. At present it has received
between 10 to 50 million downloads from Google Play.

PrivacyPalisade flagged it as an outlier because it
required the “precise location” permission which only
14% of similar apps required. This permission is used
to determine what local radio stations are available
in the area. For iHeartRadio to perform a local radio
station lookup, “precise location” is not needed. TuneIn
radio which provides a similar service only required
“approximate location” to achieve the same function.
All competitors received a similar number of downloads
to iHeartRadio, indicating that precise location access
is not a deterrent for users.

B. Dictionary.com

Dictionary.com provides a free online English dictio-
nary app for its Android and iOS users. The Android

version has received between 10 to 50 million down-
loads. The app requests 11 permissions, one of which
is sensitive and flagged by PrivacyPalisade (“precise
location”).

The app requires location to support the local
lookups feature which allows the user to see nearby
word searches. Similar competitive apps such as the
Oxford Dictionary of English and Merriam-Webster do
not require any location information. Each of these
dictionary apps are very popular, thus indicating it is
not apparent to users that an alternative dictionary that
is not location invasive is available. Precise location
is not needed to provide a nearby search feature,
approximate location is sufficient and would result in
the app following the least privileged path.

C. Hana Bank

Hana Bank is one of the largest banks in South
Korea. A mobile app is provided to their customers
available on both Android and iOS. Google Play states
that it has received between 1 to 5 million installs. Pri-
vacyPalisade detected 25 permissions requested, many
of which give access to sensitive data. For example,
only 20% of similar apps required access to the “read
your contacts” and “read call log” permissions.

The app requires access to contacts to allow the user
to see a list of people they can transfer money. We ob-
served banking apps require a combination of “directly
call numbers” and “write call log” for the app to provide
a direct way of calling customer support numbers.
Removing the “read call log” permission would not
hinder this functionality. Many similar banking apps
require the “receive text messages” permission which
allows the app to verify the phone number via reading
a confirmation SMS. For this type of verification, “read
your text messages” is not needed. However, it is
requested by the app.

V. Related Work

Recent research on privacy is focused on the sen-
sitivity of data stored on mobile devices. No current
platform has achieved a good balance between con-
trol, information and interactivity [8]. Early protection
techniques used frequent intrusive popups requesting
a user for permission to access data. For example each
time a location sample was required, the user is asked
to give permission. Our solution only alerts users when
an app is detected as an outlier. Therefore, it reduces
the amount of popups from the traditional approaches.

Many users do not easily comprehend the implica-
tions of granting third party apps permission to access
data [9]. A user study was performed via an Internet
survey with 308 participants. It was found only 15%
of the participants paid attention to the permissions at



installation time. This highlights the need for improving
user comprehension. PrivacyPalisade uses clear exam-
ples of the implications of permissions in outlier apps.

Self-organizing maps (SOMs) were used to visualize
the Android permissions system and provide insights of
where it could be improved [10]. Some permissions are
used frequently while other permissions are only used
by a small subset of applications. While there are many
permissions a user can allow or disallow for mobile
apps, it was found that few clusters cover most users’
privacy preferences [11]. This can help in determining
how strict to implement user privacy controls.

Risk signals have been proposed using a SVM model
that compares apps across two datasets and looks
for rare permissions across categories [12]. Privacy-
grade.org [13] researchers use crowd-sourced data
which require extensive data collection. Rules for de-
tecting dangerous combinations of permissions was
proposed in [14]. For example, a combination of In-
ternet and microphone permissions enable the app to
record mobile conversations. Risk signals are also used
by PrivacyPalisade to alert users of privacy implica-
tions.

A framework for detecting Android malware based
on permissions was proposed in [5], where k-Means
clustering is combined with decision tree learning.
Malware samples were used to train the classifier.
Similarly PUMA [6] compares extracted permissions
from an APK and compares them to known malware
samples provided by the VirusTotal online security tool.
Crowdroid [7] also uses k-Means to detect malware,
however instead of using permissions data, crowd-
sourced samples of user behavior related to system
calls is used.

AndroidLeaks [15] and Stowaway [16] decompile
the Java source code and look for methods that pass
personal information and detect overprivilege in apps.
It has been determined that many apps do not follow
the least path of privilege. While this is useful in
detecting what data is captured from an app, it does
not provide information on whether the collection of
data was justified to provide functionality.

TaintDroid attempts to provide insights into how
apps use and share data by providing continuous real
time monitoring of data and when data leaves the
phone [17]. While TaintDroid provides a good monitor
of what data is leaving the phone, it does not provide
any protection to prevent it from occurring.

VI. Conclusion and Future Work

In this paper, we evaluated the most popular Android
apps and presented an approach to highlight outliers
by using the permissions information of apps of similar

functionality as inputs for the Isolation Forest anomaly
detection technique. Privacy focused UI enhancements
to Android were also demonstrated. By color coding the
launcher icons, it can be easily seen by the user which
apps are privacy invasive. The dialogs displayed when
an outlier app is opened would help the user easily
understand which apps are more privacy invasive.

We are currently in the process of deploying Priva-
cyPalisade on Google Nexus devices and conducting
a user study. In future work we aim to implement a
continuous monitoring solution to create a profile of
each data entry an app has requested and sent to a
server.

References

[1] L. Kulik, “Privacy for real-time location-based services,” in
SIGSPATIAL Special. ACM 1(2), 2009.

[2] A. Holzer and J. Ondrus, “Trends in Mobile Application Devel-
opment,” in Mobilware 2009.

[3] F. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in ICDM
2008.

[4] S. Llamas, Chau, “Android and iOS Squeeze the Competition,
Swelling to 96.3% of the Smartphone Operating System
Market for Both 4Q14 and CY14,” 2015. [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS25450615

[5] Z. Aung and W. Zaw, “Permission-based Android malware detec-
tion,” in IJSTR 2(3), 2013.

[6] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Bringas,
and G. Álvarez, “PUMA: Permission Usage to Detect Malware
in Android,” in CISIS 2012.

[7] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
Behavior-based Malware Detection System for Android,” in
SPSM 2011.

[8] K. W. Y. Au, Y. F. Zhou, Z. Huang, P. Gill, and D. Lie, “Short Paper:
A Look at Smartphone Permission Models,” in SPSM 2011.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wag-
ner, “Android Permissions: User Attention, Comprehension, and
Behavior,” in SOUPS 2012.

[10] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A Methodology for Empirical Analysis of Permission-based
Security Models and Its Application to Android,” in CCS 2010.

[11] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling Users’
Mobile App Privacy Preferences: Restoring Usability in a Sea
of Permission Settings,” in SOUPS 2014.

[12] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android Permissions: A Perspective Combining Risks
and Benefits,” in SACMAT 2012.

[13] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and Purpose: Understanding Users’ Mental Mod-
els of Mobile App Privacy Through Crowdsourcing,” in UbiComp
2012.

[14] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile
Phone Application Certification,” in CCS 2009.

[15] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
Automatically Detecting Potential Privacy Leaks in Android
Applications on a Large Scale,” in TRUST 2012.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in CCS 2011.

[17] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth, “TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Mon-
itoring on Smartphones,” in TOCS. ACM 32(2), 2014.


